
 

CS-202 Exercises on Memory  (L04 - L05)  
 

Exercise 1: Processes don’t share virtual address space  

Modern systems run multiple processes simultaneously instead of one at a time. However, one 
process should not be able to modify another process's memory unless the two processes 
agree. We will see how this protection is enabled through separate virtual address spaces for 
each process.  
 
Suppose process P1 is executing the following program, which forks a child process P2. 
 

int x = 0;                   // A global variable  
int main() {  
   x = 10;  
   pid_t pid = fork();  
   if (pid == 0) {           // Child process P2 
      x = 42; 
      printf("Child P2 says x = %d\n", x);  
   } else {                  // Parent process P1  
      wait(pid); // Wait for the child P2 to finish 
      printf("Parent P1 says x = %d\n", x);  
  }  
  return 0;  
} 

 
 

●​ If  x  is at virtual address VA_x in process P1, what is its corresponding address in 
process P2?   The virtual address of x in process P2 is the same as in process P1: VA_x. 

●​ If VA_x maps to physical address PA_x in process P1, what does it map to in process 
P2?  Before modification, it is PA_x as well, after modification, it maps to a new PA_x’ 
(essentially copy on write).  

●​ What does P1 print and what does P2 print?  P1 print : Parent P1 says x = 10; P2 print: Child 
P2 says x = 42 

●​ Under the simplifying assumption that there is no CPU cache, what must the CPU do in 
order to write value to the memory location that stores variable  x ?  

The CPU must perform the following operations: 
-​ Translate the virtual address (VA_x) to a physical address (PA_x) using the page 

table (specifically, MMU inside the CPU does this). 
-​ Check access permissions (e.g., is the page writable?). 
-​ Issue a memory write operation to store the new value at PA_x. 
-​ If copy-on-write (COW) applies, allocate a new page (PA_x'), copy the old 

contents, update the page table for the process, and write to the new page. 



○​ Suppose process P1 is running, then the timer interrupt occurs and the OS 
scheduler picks P2 to run.  

○​ What information must be updated concerning memory accesses?  
-​ Update the Page Table Base Register (i.e., register cr3) to point to P2’s page 

table. (The address of this page table is stored in a per process task struct in 
linux for P2). 

-​ Update CPU registers to restore P2’s execution state, including its stack pointer, 
instruction pointer, and general-purpose registers. 

●​ [Optional, for the students who took computer architecture] Removing the simplifying 
assumption that there is no CPU cache; what information needs to be updated such that 
caching works correctly with paging? What if the system uses segmentation for address 
translation?     

For paging: 
-​ The TLB (Translation Lookaside Buffer) must be flushed or updated when 

switching processes to prevent using invalid address translations. 
-​ If TLB has ASID (address space id), such flush is not necessary.  

For segmentation: 
-​ The segment descriptor tables must be switched to match the new 

process’s memory layout. 

Exercise 2: Threads do share virtual address space  
Besides creating a new process with fork, we can create a new thread within the same process 
with  pthread_create  and wait for a thread to finish with  pthread_join. Given a slightly different 
program below, answer the following questions:  
 

int x = 0;  
// The "child" thread function 
void* child_thread(void* arg) {  
     x = 42;  
     printf("Child thread says x = %d\n", x);  
     return NULL;  
} 
 
int main() {  
     . . . 
     x = 10;   
    // Create child thread pthread_t tid;  
    pthread_create(&tid, NULL, child_thread, 
NULL);  
    // Wait for child thread to finish  
    pthread_join(tid, NULL);  
     
    printf("Parent thread says x = %d\n", x);  
    return 0;  
} 



 
 

●​ If  x  is at virtual address VA_x in the parent thread, what is its corresponding address in 
the child thread? The virtual address of x in the child thread is the same as in the parent thread: 
VA_x. 

●​ If VA_x maps to physical address PA_x in the parent thread, what does it map to in the 
child thread? Since both threads share the same memory space, VA_x in the child thread also 
maps to PA_x. 

●​ What does the parent thread print, and what does the child thread print?  
○​ Child thread prints: Child thread says x = 42 
○​ Parent thread prints: Parent thread says x = 42 

 
 

 
 

Exercise 3: Address translation using base & bound     
Consider a system that implements address translation using the base & bound approach. 
Consider the following code:  
 

char *a = 0x108; 

Putchar (*(a + 0x10)); 

putchar(*0x128); 

 
 
For the two lines with  putchar, describe which virtual address will be referenced and which 
physical address will be accessed, if the corresponding process: 

(a)​Has base 0x100 and bound 0x230. 
`putchar(*(a + 0x10))`: the virtual address a + 0x10 is 0x108+0x10 = 0x118, which is 
within the range. The physical address is 0x118+0x100 = 0x218 
`putchar(*(0x128))`: the virtual address is 0x128, which is within the range.  
The physical address is 0x128+0x100 = 0x228 

(b)​Has base 0x250 and bound 0x370 
`putchar(*(a + 0x10))`: the virtual address a + 0x10 is 0x108+0x10 = 0x118, The physical 

address is 0x118+0x250 = 0x368.which is  within the range. `putchar(*(0x128))`: the physical 
address is outside the range, so a segmentation fault will occur. 
 

 



Exercise 4: Address translation using a single-level (linear) page table    

Consider a system that implements address translation using paging and, in particular, a 
single-level (linear) page table. Assume page-table entries of 4 bytes.  
 
Assume 32-bit virtual and physical addresses, and pages of 4 KiB (4096 bytes). In each 
page-table entry (PTE), how many extra bits are available for storing additional information 
other than the frame number? 
 
Step1: since the page size is 2^12 bytes = 4KiB, the number of bits for the offset within the page 
is 12 bits. In a 32-bit address space, the number of bits for the page number (and also the frame 
number in the physical address space) is 32−12=20 bits.  
Step2: each page-table entry (PTE) is 4 bytes (32 bits). Since the PPN takes 20 bits, the 
remaining bits for extra information are: 32 − 20 = 12 extra bits.  
So, 12 extra bits are available for storing additional information 
 
Assume 40-bit virtual and physical addresses, and pages of 4 KiB. Does your answer change 
and – if yes – how? 
 
Page size is still 4 KiB, thus 12 bits for the page offset. The virtual address space is 40 bits, so 
the remaining 40 - 12 = 28 bits are used for indexing the page table. So the PPN takes 40 - 12 = 
28 bits. 
Each PTE is still 4 bytes (32 bits). Since the PPN takes 28 bits,  
So the remaining bits for extra information are 32 − 28 = 4 extra bits. 

Assume 8-bit virtual addresses, 11-bit physical addresses, and pages of 32 bytes. 

●​ How many bits are used for computing the page offset? How many bits are left for 
indexing the page table (computing the virtual page number)? 

Since 32 = 2^5, we need 5 bits for the offset within the page. There are 8-5=3 bits left to 
index into the page table. 

●​ How many entries does each page table have in total? 

 The number of entries in the page table is 2^3=8 entries 

 

Consider the last set of assumptions (8-bit virtual addresses etc). Assume additionally that the 
first bit of each PTE is a “valid” bit, which by default is set to 0 (invalid). 

 



Suppose a process performs the following two operations: 

●​ It stores a one-byte value at virtual address  0x82, and this value ends up in physical 
frame number  0b1100. 

●​ It stores a 64-byte array starting at virtual address 0xA0, and this array ends up stored in 
physical frame numbers 0b11000  & 0b11. 

 

Fill out the following page table after these two operations have occurred. 

Valid Bit Virtual Page Number (VPN) Page Frame Number (PFN) 

0 0 - 

0 1 - 

0 2 - 

0 3 - 

1 4 12 

1 5 24 

1 6 3 

0 7 - 

 
 

 
 

 



Exercise 5: Address translation using a multi-level page table  
Consider a system with 16-bit virtual addresses, pages of 256 bytes, and a two-level page table. 
 

●​ What is the total amount of physical memory that could be referenced by such a page 
table? 16(L1 entries)×16(L2 entries)×256(bytes per page)=65536 bytes=64 KB 

●​ [Advanced] Suppose the given system has X bytes of free physical memory, where X 
is the answer you gave to the first question. Assume no swapping to disk. 

Suppose the user invokes a program, which triggers the creation of a new process. 
Can this new process use all X available bytes to store its code and data? (Hint: what 
is one of the disadvantages of using paging?)  

No, because the OS also needs some bytes of memory to store page tables of this 
process in order for the virtual memory translation to work.  

A more detailed calculation is the following:  

First, there needs one first level page table, that stores addresses to second level page 
tables, and it occupies 16*8 = 128 bytes. Note, in a real OS, one page table normally 
occupies 1 page. Here, one page table occupies 128 bytes, which are less than one 
page.   

Now, let’s assume that all entries of this first level page table are not empty and point to 
a second level page table, then there are 16 second level page tables. In total, 17 page 
tables which occupies 17*128 bytes =  2176 bytes. In total, these page tables stored 
translation for 65536 bytes of memory.   

However, the process can’t use all  65536 bytes of memory, because then no memory 
can be used to store the page tables.    

Hence, some entries of the first level page table should be empty.  

Now let’s assume the process can use Y pages. Each 16 pages the process uses 
requires one second level page table. Hence the following inequality should hold:  

Y*256 + Y/16*128 + 128 < 65536  implies 

Y <= 247 pages                             implies  

the process can use 247*256 bytes of memory. 

​ Using the partial page tables shown below, translate virtual address  0x1f3a into a 
physical address.  

-​ 0x1F3a=0b0001_1111_0011_1010, page size is 8-bit (4-bit for first level page 
table and another 4-bit for second-level page table 



-​ the first-level page table index is 0b0001 = 0x1 
-​ the second-level page table index is 0b1111 = 0xF 
-​ The 8-bit page offset is the right-most 8 bits, which is 0x3a  
-​ 0x1 → 0x6000 → level 2: 0xF → 0xff00 + 0x3a = 0xff3a  

The level-1 page table: 
 

Index Address 

0x0 0x2000 

0x1 0x6000 

… … 

0xf 0x1300 

 
 
 
 
 
The level-2 page table at physical address 0x6000 is:  
 

Index Address 

0x0 0x3000 

0x1 0x7000 

… … 

0xf 0xff00 

 
 

 

Exercise 6: What are possible page sizes?   

The following diagram illustrates which bits of each virtual address are used to index each 
page-table level, in a given computer architecture. 

Given this architecture, one cannot change which virtual-address bits are used to index each 
page-table level. E.g., to index the first page-table level, bits 39 to 47 must be used; to index the 
second page-table level, bits 30 to 38 must be used; and so on. However, the OS is free to write 
anything it wants inside each page table.  



 

●​ What page sizes other than 4KiB can be used (without reducing the amount of physical 
memory that can be referenced)? 

1.​ Page size: 4KiB, offset bits: 12 bits, page table levels used: PML4-PDP-PD-PT 
2.​ Page size: 2MiB, offset bits: 21 bits, page table levels used: PML4-PDP-PD 
3.​ Page size: 1GiB, offset bits: 30 bits, page table levels used: PML4-PDP 

●​ What are the benefits of using larger pages instead of smaller ones? (Consider 
trade-offs in TLB (Translation Lookaside Buffer) efficiency, memory fragmentation, and 
access latency.) 
Minimizes TLB overhead significantly, which reduces TLB miss and hence improves 
latency.   
Best for large-memory workloads like high-performance computing (HPC), machine 
learning, and virtualization. 

 
 
 

 

  Exercise 7: Digesting the benefits of virtual memory    

 Consider the following  scenario: 

●​ A system with 16-bit virtual addresses.  
●​ Only 32 KiB of physical memory have been installed. 
●​ Three processes, P1, P2, and P3, are started, each with a memory image of  20 KiB. 
●​ During its lifetime, each process only accesses disjoint 4 KiB sections of its 20 KiB 

memory image. 

 



●​ Do you think it would be possible to host all three processes simultaneously without 
memory virtualization? If yes, how? If not, why not?  

In pure physical addressing (without virtual memory): Each process must be assigned a 
fixed region in physical memory. The OS must fit all allocated memory within 32 KB 
RAM. Since the total request is 60 KB, but RAM is only 32 KB, it is impossible to run all 
three simultaneously. 

●​ With memory virtualization, is it possible to host all three processes simultaneously? If 
yes, how? If not, why not? 

 

Each process sees its own 64 KB address space (even if only 32 KB of physical memory 
exists). The OS swaps or maps only the required 4 KB working set into physical RAM. At 
any moment, only the needed 4 KB per process is kept in RAM, while the rest remains 
on disk or is swapped out.  Total active memory usage: 4 KB(A)+4 KB(B)+4 KB(C)=12 
KB. Since 12 KB < 32 KB physical RAM, all three can run simultaneously.  

 

Exercise 8: Base & bound against paging   

(a)​Basic questions: 
●​ What is the main advantage of implementing address translation using paging as 

opposed to base & bound?  

The primary advantage of paging over base & bound is efficient memory utilization and 
fragmentation management: 

-​ Relieve fragmentation: Paging divides memory into fixed-sized pages, allowing 
processes to use non-contiguous physical memory, which reduces wasted space 
compared to base & bound, which requires a single contiguous block. 

-​ Paging enables demand paging, where only needed pages are loaded into RAM, 
allowing larger programs to run even if physical memory is limited.  

-​ Paging makes it easier to support multiple processes by dynamically allocating 
memory without requiring contiguous allocation. 

-​ …  
●​ What is the main advantage of using base & bound as opposed to paging? 

The main advantage of base & bound is lower overhead and faster address translation: 

-​ Lower hardware complexity: Base & bound only requires a base register and a 
bound register, making address translation significantly faster compared to 
paging, which involves multiple memory accesses due to page table lookups. 



-​ Less memory overhead: Paging requires a page table, which consumes 
additional memory, whereas base & bound only needs two registers. 

-​ Faster context switching: Since base & bound uses just two registers, switching 
between processes requires only updating these registers, making it faster 
compared to paging, where switching might need to flush the TLB. 

●​ Think of a scenario where base & bound might be preferable to paging. Explain your 
reasoning. 

A scenario where base & bound is preferable is in real-time embedded systems that 
require ultra-low latency and deterministic performance: 

-​ Real-time constraints: Systems such as avionics, industrial automation, and 
medical devices require predictable and fast memory access. Paging introduces 
variable delays due to page table lookups and possible page faults, which could 
be unacceptable in time-critical applications. 

-​ Minimal hardware resources: Many embedded systems have limited memory and 
cannot afford the overhead of maintaining page tables. Base & bound, requiring 
only two registers, is more efficient in such constrained environments. 

-​ Single-task environments: If the system runs a single dedicated task or a few 
well-defined processes with preallocated memory, the benefits of paging (e.g., 
memory sharing and dynamic allocation) are unnecessary, making base & bound 
a simpler and more efficient choice. 

-​ … 

(b)  Design: Imagine you are tasked with designing a new system that can concurrently run 
multiple operating systems. Your design must handle memory management efficiently while 
ensuring strong security and high performance. You can choose between base & bound and 
paging for virtual memory management. 

Overall reasoning: Because each guest OS already uses paging internally to manage its 
processes, it does not matter whether the underlying system provides a single large contiguous 
region or subdivided page frames. By simply giving each guest OS a big contiguous memory 
segment, the new system’s job is simplified (it only needs to handle base & bound registers). 
Therefore, base & bound is preferred here for its simplicity. Each guest OS can still do 
fine-grained paging internally if needed. 

●​ How does your chosen approach optimize memory access and overall system speed? 
(Consider the overhead involved in address translation and the potential impact on cache 
performance. ) 
 

​  Since the new system uses base & bound, switching to a new virtual address space  
(e.g., when switching between guest OSes) is very fast and low-cost: 

The address translation simply adds the base to the virtual address if it is within the 
bound—far fewer steps than walking multi-level page tables. 



There is no need to load or flush Translation Lookaside Buffers (TLBs) at this new 
system level, reducing potential overhead and avoiding TLB contention. 

 
●​ Discuss how your design tradeoff simplifies memory allocation/deallocation and 

minimizes fragmentation. 
  
With base & bound, memory is allocated in contiguous chunks, one chunk per OS. This 
means: 

●​ The new system only has to manage continuous blocks of physical memory. 
●​ Each guest OS is then responsible for handling its own internal paging and any 

fragmentation within its assigned chunk. Hence fragmentation is less of a 
concern for the new system.  

●​ Allocation and deallocation are quick. 
●​ Explain how your chosen method provides effective isolation between the operating 

systems 
 
Different OSes live in disjoint physical memory, with access controlled by base & bound. 
This provides effective isolation.  

 
 

[Advanced] Exercise 9: Where does the virtual address of a program come from?   
 
Have you ever wondered where the virtual addresses of your program come from? In class, we 
said that the compiler compiles a source code into an executable program. To be more precise, 
the compiler compiles source code into an intermediate form, which is almost an executable 
program, but not quite; there is another tool, called the “linker", which prepares this intermediate 
form into an executable program. The linker plays a crucial role in determining the virtual 
memory layout of the program's code and data: it uses a “linker script” to define the memory 
locations of the different segments of the memory image,, such as .text, .rodata, .data, 
and .bss 
 

OUTPUT_FORMAT("elf64-x86-64") 
ENTRY(_start) 
 
SECTIONS 
{ 
  . = 0x400000;     ​    /* Default load address for ELF */ 
  .text : { *(.text) }     /* Code section */ 
  .rodata : { *(.rodata) } /* Read-only data section */ 
  .data : { *(.data) }​    /* Initialized data section */ 
  .bss : { *(.bss) }  ​    /* Uninitialized data section */ 



  . = ALIGN(16);     ​    /* Align to 16 bytes */ 
  _end = .;          ​    /* Symbol marking the end of the program */ 
} 

 
In this script: 

●​ The .text section (code) starts at the virtual address 0x400000. 
●​ The .rodata section (read-only data) is placed immediately after the .text section. 
●​ The .data section (initialized data) is placed after .rodata. 
●​ The .bss section (uninitialized data) is placed after .data. 
●​ The linker aligns the sections to 16 bytes and marks the end of the program with the 

symbol _end 

 

●​ If the  .text  section occupies 0x1000 bytes, the  .rodata  section occupies 0x500 
bytes, the .data  section occupies 0x200 bytes, and the .bss  section occupies 
0x300 bytes, what are the starting virtual addresses of each section? find the starting 
virtual addresses of each section and the value of  _end . 

1. .text Section: Start address + size  = 0x400000 + 0x1000 = 0x401000. 

2. .rodata Section: Start address + size = 0x401000 + 0x500 = 0x401500. Align to 16 
bytes → Round up 0x401500 to the next multiple of 0x10: 0x401500 (already aligned). 

3. .data Section: Start address + size = 0x401500 + 0x200 = 0x401700. Align to 16 bytes 
→ 0x401700 is already aligned. 

4. .bss Section: Start address + size = 0x401700 + 0x300 = 0x401A00. Align to 16 bytes 
→ 0x401A00 is already aligned. 

5. The address after .bss is 0x401A00. _end is then assigned the value of the next 
available address, which is:_end=0x401A00` 

●​ Modify the script to add a new section .custom  (aligned, occupies 0x100 bytes) 
between .data  and .bss . Find the new value of  _end . 

  .custom section : start address + size = 0x401700 + 0x100 = 0x401800. 0x401800 is 
already aligned. 

  .bss Section:  start address + size  = 0x401800 + 0x300 = 0x401B00, is already 
aligned. 

    The .bss section ends at 0x401B00, so _end is assigned this value. 



●​ Discuss implications if virtual address 0x400000 is already in use by another process. 

This is irrelevant, because each process has its own virtual address space.  
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